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Bifurcation phenomena for an oxidation reaction in a
continuously stirred tank reactor

I. Adiabatic operation
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We investigate the steady-state multiplicity exhibited by the reaction of a fuel/air mixture
in a continuously stirred tank reactor. The chemical mechanism used is a modification of a
scheme due to Sal’nikov. We consider four cases; corresponding to the choice of fuel frac-
tion, inflow temperature, inflow pressure, or precursor decay rate as the primary bifurcation
parameter. From the perspective of fire-retardancy, the case when the fuel fraction is varied
is the most important. In this case the steady-state diagrams provide a basis for a systematic
investigation into the effectiveness of gas-phase active fire retardants.
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1. Introduction

The continuously-stirred tank reactor (CSTR) is one of the standard types of reac-
tor used in industry. The reactants flow continuously at a known volumetric flow-rate
into the reactor and, in order to maintain a constant reaction volume, there is a matching
volumetric outflow from the reactor. As a result, chemical species spend only a finite
time in the reactor. The CSTR is efficiently stirred so that there are neither any concen-
tration gradients nor a temperature gradient. The bifurcation behaviour of such reactors
have been widely investigated in the context of chemical engineering [1]. Particular at-
tention has been paid to models using a first-order nonisothermal irreversible reaction
(FONI models).

Traditionally, gas-phase combustion processes were studied in batch reactors. In
the early to mid 1970s groups in Leeds and Naples realised that the CSTR offers a much
better experimental arrangement [2–6]. In a CSTR true stationary states can be realised
and oscillatory behaviour sustained indefinitely. The use of CSTRs was responsible for
the advancement in understanding of the mechanism for hydrocarbon oxidation in the
1970s and 1980s and they are now commonly used to study combustion reactions. The
absence of spatial gradients permit a stress on the physical chemistry of the problem,
without the added complications of fluid flow, and presents an opportunity to validate
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detailed kinetic mechanisms through the analysis of the rich variety of phenomena ac-
companying low temperature oxidation (multiplicity, birhythmicity, cool flames, oscilla-
tory ignition, two-stage and multi-stage ignition, complex ignition, steady ignition etc).
There are a number of review articles containing good expository sections on the use of
the CSTR in gas-phase combustion studies [7–10].

Here, we investigate the dynamics of a simple gaseous oxidation reaction in a
CSTR. Our chemical model is a modified version of a scheme originally proposed by
Sal’nikov to explain the phenomena of cool flames [11,12]. Sal’nikov’s scheme con-
sists of a two-state decay of a precursor through an intermediate to a final product. Our
modification is to introduce an additional chemical species, making the second stage
an oxidation reaction. We investigate how the steady-state multiplicity of our model
depends upon the choice of primary bifurcation parameter. Three cases are considered
when the distinguished parameter is experimentally controllable. These correspond to
the choice of either the proportion of precursor to oxygen flowing into the reactor, the
inflow temperature, or the inflow pressure as the primary bifurcation parameter. In a
fourth case, the effect of changing the decay rate of the precursor species is investigated.

In this paper, we consider the simplifying case when the reactor operates adiabat-
ically, i.e., there is no heat loss between the sides of the reactor and the reaction mix-
ture. The main reason for this assumption is the resulting simplification of the model.
However Russo and Bequette [13] have shown that increasing the reactor size causes a
reduction in the ratio of heat transfer area to reactor volume. Therefore as the reactor
size is increased the effective heat transfer coefficient decreases. As a result, adiabatic
operation may be approached when scaling up laboratory sized reactors for industrial
operation. Furthermore, combustion in a CSTR can be viewed as an zero-dimensional
model for a premixed flame. The assumption of no heat loss therefore equates to a study
of an adiabatic flame. It is believed that the treatment of peak premixed flame tempera-
tures as adiabatic is a reasonable approximation [14]. The adiabatic CSTR is, therefore,
of independent interest.

In section 1.1 we review work examining the Sal’nikov scheme in well-stirred
systems. The appropriate mathematical tool for studying multiplicity in open chemical
systems is singularity theory. Section 1.2 contains an overview of this subject.

1.1. The Sal’nikov thermokinetic oscillator

The simplest nonisothermal model generating oscillatory behaviour is due to
Sal’nikov [11,12]. Sal’nikov’s aim was to explain the occurrence of cool flames ob-
served in the oxidation of hydrocarbons. It is now accepted that the correct description
of this phenomenon is the unified chain-thermal theory developed by Gray and Yang
[15,16]. Sal’nikov’s model retains interest because it provides an archetypal example of
nonisothermal chemical oscillations that completely satisfies chemical principles whilst
being simple enough to be understood easily and to be analysed deeply. Moreover, as
described in section 1.1.4 it has been realised experimentally, thus showing that chemical
complexity involving chain branching is not a prerequisite for the existence of thermoki-
netic oscillations.
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Sal’nikov’s scheme consists of an exothermic reaction proceeding by two consec-
utive first-order reactions. A precursor F generates a reactive species B which decom-
poses through an exothermic reaction to an inert product C. It is assumed that all the
heat output is associated with the second reaction. This scheme is represented as

F k1(T )→ B (Q1 = 0), (1)

B k2(T )→ C (Q2 �= 0), (2)

where the temperature dependence of the two reaction rates takes Arrhenius form. We
refer to the scenario in which the activation energy of the first reaction is zero, i.e.,
only the second step is responsive to temperature, as a “single Sal’nikov scheme”.
When both activation energies are nonzero we call the resulting mechanism a “dou-
ble Sal’nikov scheme”. In investigating the behaviour of Sal’nikov schemes it is usu-
ally assumed that the precursor species is in excess so that its depletion can be ig-
nored.

Sal’nikov investigated the dynamics of the single and double schemes using tech-
niques from classical dynamical systems theory. He assumed that the reactions took
place in a well-stirred batch reactor and that depletion of the precursor species was neg-
ligible. A region in parameter space was established in which the system is in a state
of undamped oscillations since the relevant phase portrait consists of an unstable steady
state surrounded by a stable limit cycle.

1.1.1. The single Sal’nikov scheme
The single Sal’nikov scheme was examined by Gray and Roberts [17] using the

techniques of singularity theory. They interpreted the boundary of the region enclosing
cool flames as the locus of Hopf bifurcation points in the pressure-ambient temperature
plane. A complete description of all the qualitatively distinct behaviour exhibited by the
model was obtained, including two regions of parameter space not previously located.
Subsequently they investigated two extensions of this work [18]. Firstly, the limiting
asymptotic behaviour was obtained exactly as the dimensionless heat capacity tends to
zero. Secondly, the effects of including fuel consumption was studied both numerically
and in a second asymptotic-limit as the rate of fuel consumption tends to zero.

Simultaneously with the work of Gray and Roberts, the single Sal’nikov scheme
was investigated by a group at the University of Leeds [19–21]. A drawback of this work
is the use of a nondimensionalisation scheme popularised by Frank-Kamenetskii. These
variables have the disadvantage that a key experimental control parameter, the ambient
temperature, appears in more than one dimensionless variable. It is therefore difficult to
directly relate the results of bifurcation analysis to experimental data. The disadvantages
of using the Frank-Kamenetskii variables are discussed elsewhere [22–24]. The work in
Leeds was not as comprehensive as that reported by Gray and Roberts.

Forbes [25] has provided a rigorous proof of the nonexistence of oscillations in
certain regions of parameter space. Although the Frank-Kamenetskii variables were
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used, the results are of a form whereby their dependence upon the ambient temperature–
pressure can be extracted. Moreira and Yuquan [26], also using the Frank-Kamenetskii
variables, established conditions under which the single Sal’nikov scheme has an unsta-
ble limit cycle inside a stable one. The proof requires rewriting the system in the form
of a Liénard equation.

The main success of Sal’nikov’s scheme is that it can generate thermokinetic os-
cillations. It is therefore natural to investigate the effect of periodic forcing. Forbes
and Gray [27] considered sinusoidal forcing of the ambient temperature. They showed
that such forcing can give rise to chaos, which results from either the Feigenbaum
period-doubling route or from the Ruelle–Takens approach through quasiperiodicity.
Delgado [28] considered forcing of the temperature derivative. In a rather cursory treat-
ment, it is shown that complex and mixed mode oscillations are possible, chaotic behav-
iour was not found. Delgado [29] then considered periodic forcing of the temperature
derivative in a system in which the reactor volume is proportional to the temperature.
Under these assumptions a period-doubling route to chaos was found as the amplitude
of the forcing term is decreased. It was subsequently demonstrated that unstable peri-
odic orbits embedded in the strange attractor could be stabilised by a continuous delay
time method [30]. Delgado has also investigated a thermal engine driven by the single
Sal’nikov oscillator [31]. The heat released by the second reaction is used to move a
piston which exchanges work between the system and its environment. The piston is
shown to have a three-stage cycle comprising nearly isometric, isobaric, and adiabatic
branches.

1.1.2. The double Sal’nikov scheme
A preliminary investigation of this scheme was made by Forbes et al. [32]. The

border in parameter space between regions possessing one and three equilibria was iden-
tified, as was the location of the Hopf locus. They proved that oscillatory behaviour is
only possible within a certain region of the parameter space. The definitive analysis of
this system was made by Gray and Forbes [33] who showed that it contains 16 quali-
tatively different phase portraits. A large number of degenerate bifurcations were iden-
tified and located, including a spectacularly degenerate Bogdanov–Takens bifurcation
that generates three homoclinic bifurcation curves rather than the usual one. Many of
these bifurcations are structurally unstable in the sense that their codimension exceeds
the number of unfolding parameters. It was shown that the exotic behaviour only oc-
curs if the activation energy of the first reaction is smaller than that of the second, as
conjectured by Sal’nikov.

Sexton and Forbes [34] investigated the use of linear control in eliminating os-
cillations in batch reactor. They showed that oscillatory behaviour can not always be
eliminated using negative feedback. In fact, there are circumstances whereby nega-
tive feedback creates a worse situation than no feedback, in these conditions positive
feedback is required to eliminate limit cycles. In addition, they exhibited a nonlinear
feedback control which guarantees no oscillations.
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1.1.3. Numerical methods
Sal’nikov schemes typically generate relaxation oscillations of considerable stiff-

ness and special numerical solution techniques are required to obtain periodic solutions.
Forbes [25] described a shooting algorithm which gave results of great accuracy, auto-
matically determined the stability of the solution, and was capable of computing unstable
periodic orbits. Herges and Twizell [35] computed solutions using the first-order explicit
Euler method and an implicit finite-difference method of the same order. Neither of these
latter methods were able to compute unstable limit cycles.

1.1.4. Experimental results
The single Sal’nikov scheme has been realised experimentally in a semibatch reac-

tor [19,36–38]. In this work the thermally-neutral temperature-independent decay of the
precursor species was mimicked by the physical process of admitting the reactant into
the batch reactor at a controlled constant rate via a calibrated capillary leak. The reactant
itself, stored in an external reservoir connected to the capillary, constitutes the precursor
species.

The dynamics of the decomposition of di-tert-butyl peroxide [19,37,38] and the
hydrogen–chlorine reaction [36] have been investigated. The behaviour in both these
systems were shown to be satisfactorily explained by a single Sal’nikov scheme. Under
the experimental conditions investigated the rate of decomposition of di-tert-butyl per-
oxide is first order, the exothermicity of the overall reaction is modified in the presence
of oxygen but the rate determining step is not changed. This system is, therefore, anal-
ogous to a single Sal’nikov scheme. The chemistry of the hydrogen–chlorine reaction
is more complicated, comprising five elementary reactions and five chemical species.
By making appropriate approximations it is possible to reduce this to a single Sal’nikov
scheme. The hydrogen–chlorine system has been investigated by Sidhu et al. [39] who
compared the location in parameter space in which oscillations are predicted to occur
using the full chemical scheme against that predicted by the Sal’nikov model.

1.2. Singularity theory with a distinguished parameter

The model studied in this paper reduces to a scalar equation of the form,

G
(
T ∗, λ,p

) = 0, (3)

see equation (38) in section 3.3. The scalar equation contains a state variable T ∗, a dis-
tinguished parameter λ, sometimes called the primary bifurcation parameter, and several
secondary bifurcation parameters p. The graph of T ∗ versus λ for fixed p is called
a steady-state diagramor a response curve. This graph contains bifurcation pointsat
which the number of solutions to the equation G = 0 changes. We call a figure showing
how the value of λ at which a particular type of bifurcation occurs varies as one of the
secondary parameters is changed an unfolding diagram.

The parameter space p consists of regions with different kinds of steady-state di-
agrams. The fundamental task in the study of equation (3) is to identify the types of
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steady-state diagrams that occur and their location in parameter space. We refer to a
figure showing where the different types of steady-state diagrams occur in the parameter
space p as a bifurcation diagram. There is no consistency of notation in the literature.
What we call a steady-state diagram has been referred to as a bifurcation diagram by
some authors. Similarly what we call an unfolding diagram has also been called a bifur-
cation diagram.

Singularity theory with a distinguished parameter enables degenerate points (sin-
gular points) to be located. At these points the boundaries of some of the various regions
coalesce, so that several types of steady-state diagrams exist in a neighbourhood of the
singularity. The singular points are characterised by the vanishing of several partial
derivatives of G with respect to T ∗ and λ. The real strength of singularity theory is that
it is able to predict all the steady-state diagrams existing locally to a singular point [40].

However, in practice it is important to determine the global existence of the dif-
fering types of steady-state diagrams. This is required because parameter values are
unlikely to correspond to those in the vicinity of a singular point. The global picture is
constructed by determining the locus of the cusp, isola, and double limit pointcurves in
physical parameter space. This method divides parameter space into different regions,
each corresponding to a different steady-state diagram of the problem G = 0. (It is
therefore a bifurcation diagram in our notation.)

This methodology is based upon Golubitsky and Schaeffer’s result that a qualita-
tive change in a steady-state diagram occurs if and only if the bifurcation parameters
cross the boundaries of one of these curves [41]. It was first systematically applied to
investigate multiplicity features of open chemically reacting systems by Balakotaiah and
Luss [42–45]. It is now a standard approach in studying such problems. An attractive
feature of this method is that the location of the boundaries is determined directly in
the physical parameter space, whereas in singularity theory proper, the boundaries are
defined in terms of the unfolding parameters appearing in the normal form of the sin-
gularity; in practice it is very difficult to relate the unfolding parameters to the physical
ones.

The cusp varietyis the set of p satisfying the equations

G = GT ∗ = GT ∗T ∗ = 0. (4)

(A set of nondegeneracy conditions must also be satisfied. These can be found else-
where [46].) Typically when the cusp curve is crossed a hysteresis loop appears or
disappears in the steady-state diagram as two limit points appear or disappear.

The isola varietyis the set of p satisfying the equations

G = GT ∗ = Gλ = 0. (5)

When the isola variety is crossed two limit points appear or disappear. Two types of
behaviour may occur. In the first, the steady-state diagrams separate locally into two
isolated curves (transcritical singularity). In the second, an isolated branch of connected
solutions appears or disappears (isola singularity).
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The double-limit varietyis the set of p satisfying the four equations

G
(
T ∗1 , λ,p

)= G(T ∗2 , λ,p
) = 0, T ∗1 �= T ∗2 , (6)

∂G
∂T ∗

(
T ∗1 , λ,p

)= ∂G
∂T ∗

(
T ∗2 , λ,p

) = 0. (7)

At a double-limit point two limit points, at T ∗1 and T ∗2 , occur at the same value of the
distinguished parameter. As the the double limit point variety is crossed the the relative
position of these limit points changes.

A heuristic description of this theory with a focus on applications to chemical sys-
tems has been written by Balakotaiah [47].

An alternative method to study steady-state diagrams, with particular relevance for
the study of chemical systems, is the parametric representation method developed by
Simon et al. [48]. This method can be applied when the singularity function takes the
special form

G = f0(x)+ u1f1(x)+ u2f2(x), (8)

where u1 and u2 represent a primary bifurcation parameter and an unfolding parameter,
respectively.

2. Description of the model

We model a mixture of fuel and air flowing through a diabatic CSTR. We make
the standard hypotheses that the reactor vessel has constant volume, perfect mixing and
constant physical parameters. The physics of the reactor are described in section 2.1
and the chemical mechanism in section 2.2. Figure 1 shows a simple representation of a
CSTR. In section 2.3 we discuss the operation of CSTRs.

2.1. Model physics

The CSTR is assumed to be contained within a circulating air oven giving uniform
heating within the enclosure to a given ambient temperature (Ta). The reactants flow

Figure 1. Schematic representation of a CSTR containing a mechanical stirrer with two input chemicals X
and Y .
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into the reactor through two pipes: the precursor species flows through one pipe and air,
considered to be 79% nitrogen and 21% oxygen, through the other. The inflow rates are
q1 and q2 (m3 · s−1), respectively. The outflow rate from the reactor is, therefore, q1+q2.
The inflow temperatures are assumed to be identical (T0).

The inflowing air and fuel are at pressures Pair and Pf, respectively. Assuming
ideal gas behaviour the concentrations of the species in the inflow are

F0 = Pf

RT0
, (9)

O2,0= 0.21
Pair

RT0
, (10)

N2,0= 0.79
Pair

RT0
. (11)

The total inflow pressure is simply

Pair + Pf = P0. (12)

We define the stoichiometry of the inflowing reactants in terms of a fuel fraction
variable (α) where

α = Pf

P0
. (13)

Thus, the concentrations of fuel and oxygen flowing into the reactor are proportional to
αP0 and 0.21(1 − α)P0, respectively.

Prior to the commencement of the experiment, it is assumed that the entire system
is first flushed with the inert nitrogen. Thus the initial concentration of all other chemical
species are zero and the initial temperature of the reactor is the corresponding steady-
state solution.

For simplicity many parameters, such as the volumetric heat capacity, are assumed
to be independent of temperature. In particular, the heat capacity of the contents of the
reactor is given by an average value. Thus an equation for the concentration of nitrogen
inside the reactor is not required as it does not effect the dynamics of the system.

2.2. Model chemistry

We consider an oxidation reaction with the overall representation

F + nO2 → nC. (14)

The chemical mechanism by which this reaction proceeds is a modified Sal’nikov
scheme, section 1.1,

F k1→ nB, (15)

B +O2
k2(T )→ C. (16)
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The first reaction is assumed to be isothermal, its rate constant does not depend
upon the temperature. We have allowed for the possibility that the decay of one mole of
the precursor produces more than one mole of fuel (n > 1). The second reaction is an
exothermic process and its rate constant has an Arrhenius temperature dependence. This
is a single Sal’nikov scheme. In previous investigations of such mechanisms it has been
assumed that the second reaction is a first order reaction with no dependence upon the
concentration of oxygen.

Note that the concentration of the precursor species and oxygen flowing into the
reactor are equal when

α = 0.21n(1 − α), (17)

⇒ αcr = 0.21n

1+ 0.21n
. (18)

Conditions in which α < αcr (α > αcr) represent fuel-lean (fuel-rich) mixtures, respec-
tively. Where analysis is possible we consider the general case and do not specify the
value of n. For numerical purposes we take n = 1, for which αcr = 0.174.

2.3. Experimental features

The experimentally controllable parameters are the reactant composition (α), the
inflow pressure (P0), the inflow temperature (T0), the inflow rates (q1 and q2), and the
vessel wall temperature (Ta). Usually the reactants are preheated to the vessel wall tem-
perature (T0 = Ta) and the flow rates are equal (q1 = q2). It is convenient to fix the
flow rates and the composition, varying the pressure or ambient temperature. One of
the principal experimental goals is to establish in the P0–Ta plane, the regions in which
the observed phenomena are found, e.g., ignitions and extinctions, cool flames etc. This
is effectively the construction of an unfolding diagram. This picture is usually built up
from a series of experiments at constant pressure in which the ambient temperature is
increased or decreased [8]. Unfolding diagrams of specific systems are discussed in the
review articles [8–10].

3. Model equations

3.1. Dimensionalised equations

The system that we study is:

• Concentration of the precursor species

Vg
dF
dt
= q1F0 − (q1 + q2)F − VgA1F . (19)

• Concentration of fuel

Vg
dB
dt
= −(q1 + q2)B + nVgA1F − VgA2 exp

[−E2

RT

]
BO2. (20)
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• Concentration of oxygen

Vg
dO2

dt
= q2O2,0 − (q1 + q2)O2 − VgA2 exp

[−E2

RT

]
BO2. (21)

• Temperature inside the reactor

cpgρgVg
dT

dt
= (q1 + q2)cpgρg(T0 − T )

+Q2VgA2 exp

[−E2

RT

]
BO2 − JχS(T − Ta). (22)

• Concentrations of precursor and oxygen in the inflow

F0 = Pf

RT0
, O2,0 = 0.21

(P0 − Pf)

RT0
. (23)

• Initial conditions

F(0) = B(0) = O2(0) = 0, T (0) = (q1 + q2)cpgρgT0 + JχSTa

(q1 + q2)cpgρg + JχS . (24)

The heat-transfer coefficient has been written as the product Jχ rather than the
usual form of χ . We have done this so that we can nondimensionalise time using a
Newtonian-cooling time-scale whilst retaining the ability to consider adiabatic operation
(adiabatic behaviour corresponds to taking J = 0). This avoids the use of different
dimensionless schemes for the cases of adiabatic/diabatic behaviour. The remaining
terms appearing in equations (19)–(24) are defined in the nomenclature.

3.2. Dimensionless equations

In nondimensionalising equations (19)–(22) we introduce a dimensionless tem-
perature (T ∗), dimensionless concentrations (A∗,B∗,O∗2), and a dimensionless time-
scale (t∗). These are defined in the nomenclature. Equations (19)–(22) can be written in
the dimensionless form:

• Dimensionless precursor concentration

dF∗
dt∗
= q∗1α −

(
q∗1 + q∗2

)
F∗ − A∗1F∗. (25)

• Dimensionless fuel concentration

dB∗
dt∗
=−(

q∗1 + q∗2
)
B∗ + nA∗1F∗ −

A∗2P∗
T ∗0

exp

[−E∗2
T ∗

]
B∗O∗2. (26)

• Dimensionless oxygen concentration

dO∗2
dt∗
= 0.21q∗2 (1− α)−

(
q∗1 + q∗2

)
O∗2 −

A∗2P∗
T ∗0

exp

[−E∗2
T ∗

]
B∗O∗2. (27)
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• Dimensionless temperature

dT ∗

dt∗
= (

q∗1 + q∗2
)(
T ∗0 − T ∗

)+ Q∗2A∗2P∗
2

T ∗2

0

exp

[−E∗2
T ∗

]
B∗O∗2 − J

(
T ∗ − T ∗a

)
.

(28)

• Dimensionless initial conditions

F∗(0) = B∗(0) = O∗2(0) = 0, T ∗(0) = (q∗1 + q∗2 )T ∗0 + JT ∗a
q∗1 + q∗2 + J

. (29)

It is important to note that our aim during the nondimensionalisation process is not
to reduce the number of model parameters to their minimal number (which is often the
purpose of nondimensionalisation). For example, the dimensionless total inflow pressure
(P∗) could be eliminated from equations (25)–(28) by suitably redefining the parame-
ters A∗2 and Q∗2. However, the total inflow pressure is one of the key experimentally
manipulated parameters and should therefore be retained in the governing equations.
Our aim in the nondimensionalisation process is to retain experimentally controllable
parameters as distinctcontinuation parameters.

3.3. Derivation of the singularity function

Equation (25) shows that the concentration of the precursor species (F∗) does not
depend upon any of the other variables in the model (B∗,O∗2, T ∗). The steady-state,
which is reached exponentially in time, is given by

F∗ = q∗1α
q∗1 + q∗2 + A∗1

. (30)

In the absence of decay (A∗1 = 0) and with equal flowrates (q∗1 = q∗2 ) the concentration
of precursor inside the reactor is half that flowing into it. This reflects the dilution that
occurs due to the mixing of precursor and air inside the CSTR.

The stoichiometry of the two-step reaction, equations (15), (16), is used to elimi-
nate either the fuel species (B∗) or oxygen (O∗2) from the system.

d

dt∗
[
nF∗ + B∗ −O∗2

]= n
(

dF∗
dt∗

)
+

(
dB∗
dt∗

)
−

(
dO∗2
dt∗

)
(31)

= {
nq∗1α − 0.21q∗2 (1− α)

}− (
q∗1 + q∗2

)[
nF∗ + B∗ −O∗2

]
. (32)

Therefore, the expression nF∗ + B∗ − O∗2 approaches a steady-state exponentially in
time. Thus under steady-state conditions, setting equation (32) to equal zero, we have
the algebraic relationship

nF∗ + B∗ −O∗2 =
nq∗1α − 0.21q∗2 (1− α)

q∗1 + q∗2
. (33)

We use this equation to eliminate the fuel species from the model.
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Under the assumption of adiabatic operation it is possible to eliminate either oxy-
gen or the temperature variable from the model. This arises because the only route for
heat-loss under these conditions also affects the species concentrations inside the reactor.

d

dt∗

[
Q∗2P∗
T ∗0
O∗2 + T ∗

]
= Q

∗
2P∗
T ∗0

(
dO∗2
dt∗

)
+

(
dT ∗

dt∗

)
(34)

=
{

0.21q∗2 (1− α)
Q∗2P∗
T ∗0
+ (

q∗1 + q∗2
)
T ∗0

}

− (
q∗1 + q∗2

)[Q∗2P∗
T ∗0
O∗2 + T ∗

]
. (35)

Therefore, the term (Q∗2P∗/T ∗0 )O∗2+T ∗ approaches a steady-state exponentially in time.
Under steady-state conditions we have the algebraic relationship

Q∗2P∗
T ∗0
O∗2 + T ∗ =

0.21q∗2 (1− α)Q∗2P∗
(q∗1 + q∗2 )T ∗0

+ T ∗0 . (36)

Using equations (30), (36) the steady-state value for the fuel species is given by

B∗ = nq∗1αA
∗
1

(q∗1 + q∗2 )(q∗1 + q∗2 + A∗1)
+ T ∗0
Q∗2P∗

(
T ∗0 − T ∗

)
. (37)

Thus, under adiabatic operation the four-dimensional system given by equa-
tions (25)–(28) reduces to a one-dimensional system. Oscillatory behaviour for this
scheme is, therefore, impossible under adiabatic operation. The multiplicity of the sys-
tem is governed by the singularity function

G = (
q∗1 + q∗2

)(
T ∗0 − T ∗

)

+ Q
∗
2A
∗
2P∗

2

T ∗2

0

exp

[−E∗2
T ∗

]{
nq∗1αA

∗
1

(q∗1 + q∗2 )(q∗1 + q∗2 + A∗1)
+ T ∗0
Q∗2P∗

(
T ∗0 − T ∗

)}

×
{

0.21q∗2 (1− α)
q∗1 + q∗2

+ T ∗0
Q∗2P∗

[
T ∗0 − T ∗

]}
(38)

(G is obtained by substituting equations (30), (33), (36) into equation (28) and investi-
gating the system under steady state operating conditions).

Note that equation (38) can also be obtained by judicious addition and subtrac-
tion of the steady-state model, equations (25)–(28) with the time derivatives set to zero.
However, this would not tell us anything about the existence or nonexistence of Hopf
bifurcations. The advantage of obtaining the singularity function by the reduction of the
model to one differential equation is that it shows that Hopf bifurcations cannot occur in
the adiabatic reactor.
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3.4. Numerics

The path following software program Auto 97 [49] was used to obtain steady-state
and limit-point unfolding diagrams. In steady-state diagrams the standard representation
is used: solid lines are stable steady states; and, dotted lines are unstable steady states.

Continuation methods require a known solution to begin calculations. Equa-
tions (25)–(28) have two “natural” starting places for continuation: no precursor species
in the inflow (α = 0) and no air in the inflow (α = 1). The appropriate steady-state
solutions are:

No fuel in the inflow (α = 0): No air in the inflow (α = 1):

F∗ = 0, F∗ = q∗1
q∗1 + q∗2 + A∗1

, (39)

B∗ = 0, B∗ = nA∗1
q∗1 + q∗2

· q∗1
q∗1 + q∗2 + A∗1

, (40)

O∗2 =
0.21q∗2
q∗1 + q∗2

, O∗2 = 0, (41)

T ∗ = (q∗1 + q∗2 )T ∗0 + JT ∗a
q∗1 + q∗2 + J

, T ∗ = (q∗1 + q∗2 )T ∗0 + JT ∗a
q∗1 + q∗2 + J

. (42)

4. Results

In sections 4.1–4.3 we investigate how the steady-state structure of our model
varies as one of three experimentally controllable parameters is changed: the fuel frac-
tion (α), the inflow temperature (T ∗0 ), or the total inflow pressure (P∗). The feed rates
of the fuel and air, q∗1 and q∗2 , respectively, are assumed fixed, although in principle they
can also be manipulated experimentally. Finally, in section 4.4 we consider the effect
of changing the precursor decay rate (A∗1). Although this parameter is not experimen-
tally controllable, it is usually taken as a primary bifurcation parameter in the single
Sal’nikov model in order to establish the necessary conditions for which thermokinetic
oscillations occur. We have already established that thermokinetic oscillations do not
occur in an adiabatic CSTR. These investigations are carried out using the methodology
outlined in section 1.2. Parameter values at which the double limit point variety occurs
were not found. Thus, in the bifurcation diagrams, figures 2, 4 and 7, only the cusp and
isola varieties are shown.

A feature of our nondimensionalisation scheme is that there is a one-to-one rela-
tionship between our dimensionless variables and their dimensional counterparts. Hence
we write often, for example, “the inflow temperature”, rather than “the dimensionless in-
flow temperature”.
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4.1. Fuel fraction as the primary bifurcation parameter

In this section the fuel fraction is regarded as the primary bifurcation parameter,
with the inflow pressure and inflow temperature as the secondary continuation parame-
ters. Recall from section 2.2 that when n = 1 the reaction mixture is said to be fuel-lean
if α < 0.174 and fuel-rich if α > 0.174. The condition α = 0.174 defines a stoichio-
metric mixture.

Figure 2 is a bifurcation diagram showing the cusp and isola locii in the inflow
pressure-inflow temperature plane. These curves, parameterised by the fuel fraction,

Figure 2. Bifurcation diagram in the inflow pressure-inflow temperature plane when fuel fraction is the
distinguished bifurcation parameter. The marked regions correspond to: (a) unique steady-state; (b) single
hysteresis loop (breaking wave); (c) double hysteresis loop (mushroom); and (d) isola. Typical steady-state
diagrams from the four regions are shown in figure 3. Parameter value: dimensionless precursor decay rate,

A∗1 = 0.1.
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divide the plane into four regions. As explained in section 1.2 there are therefore four
generic steady-state diagrams. The four regions coalesce at a point where the cusp and
isola curves intersect tangentially. This point satisfies the equalities

G = GT ∗ = GT ∗T ∗ = Gα = 0 (43)

and is therefore a pitchfork singularity [46]. Note that all four regions are found in
a neighbourhood of this point. In the language of singularity theory the pitchfork is
therefore an organising centre for this system.

The generic steady-state diagrams are illustrated in figure 3. Observe that in each
diagram the maximum temperature occurs at α ≈ 0.179, a mixture that is on the fuel-

Figure 3. The four generic steady-state diagrams when fuel fraction is the primary bifurcation parameter:
(a) unique, showing the points of absolute sensitivity discussed in section 5.2, (b) single hysteresis loop
(breaking wave), (c) double hysteresis loop (mushroom), (d) isola. These figures correspond to a hori-
zontal slice through figure 2 with P∗ = 0.02. The abbreviations ELP and ILP are extinction limit point
and ignition limit point, respectively. Parameter values: dimensionless precursor decay rate, A∗1 = 0.1;
dimensionless pressure, P∗ = 0.02; dimensionless inflow temperature, (a) T ∗0 = 2.2, (b) T ∗0 = 2.1,

(c) T ∗0 = 1.93, (d) T ∗0 = 1.8.
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rich side of stoichiometry. This is discussed further in section 5.1. Figure 3(a) shows
a unique steady-state diagram. From a practical perspective there is a region on this
figure in which the system is in a state of combustion, although there are no critical
values of the fuel fraction at which abrupt changes in the temperature occur. Instead,
ignition and extinction occur gradually. To see that a state of combustion exists ob-
serve that, for example, the maximum temperature on figure 3(a) is higher than that on
some parts of the combustion branch on figures 3(c)–(d), even taking into account the
higher inflow temperature for figure 3(a). Alternatively, if one starts in the vicinity of
the maximum temperature on figure 3(d) and slowly increases the inflow temperature the
sequence of steady-state diagrams shown in figures 3(d) to 3(a) are transversed. Even-
tually figure 3(a) is reached with only a small decrease in the steady-state temperature:
combustion must have been maintained during this sequence. The concept of criticality
for unique response curves is discussed in section 5.2.

Under the experimental conditions defined by figure 3(b) the response diagram
contains a single hysteresis loop (such response diagrams are also known as breaking-
waves). For fuel-lean mixtures ignition and extinction are defined by limit points at
α = 4.479718 · 10−2 and α = 4.216573 · 10−2, respectively. At these values ignition
(extinction) occurs suddenly as the fuel fraction is increased (decreased) from (towards)
zero. There is a very small region over which the reactant composition defines a flam-
mable mixture (4.216573 ·10−2 < α < 4.479718 ·10−2 ). For fuel-rich mixtures ignition
(extinction) occurs gradually as the fuel fraction is decreased (increased) from (towards)
one, similar to the situation in figure 3(a). The concept of criticality for fuel-rich mix-
tures in breaking-wave systems is discussed in section 5.2.

Figure 3(c) shows a double hysteresis loop (such response curves are frequently
referred to as “mushrooms”). This system has two ignition limit points, at α = 0.202
and α = 0.757, and two extinction limit points, at α = 0.056 and α = 0.830. Thus,
if either α < 0.056 or α > 0.757 the reaction mixture is nonflammable. If either
0.056 < α < 0.202 or 0.757 < α < 0.830 the mixture is flammable. Finally, if
0.202 < α < 0.757 autoignition occurs. When the response diagram is a mushroom,
combustion of either very fuel-lean (α < 0.056) or very fuel-rich (α > 0.830) mixtures
can be initiated abruptly by either increasing or decreasing the fuel fraction, respectively.
This is in contrast to the single hysteresis loop response diagram, figure 3(b), where only
very fuel-lean mixtures can be ignited abruptly.

A typical isola solution is shown in figure 3(d). This figure contains two disjoint
solution branches: a low-valued no-ignition branch, on which the maximum temperature
raise is approximately 3 K over the inflow temperature; and, an isola, which has stable
and unstable branches. The isola has two extinction limit points at which combustion
is extinguished, between these points the flame temperature varies smoothly with the
fuel fraction. Flammability limits are identified with the extinction limit points: the
lower flammability limit (fuel-lean flammability limit) is given as α = 0.062 and the
upper flammability limit (fuel-rich flammability limit) is given as α = 0.788. Thus,
in figure 3(d) a fuel-air mixture is flammable only if its composition is in the range
0.062 < α < 0.788. There are no ignition limit points on this figure. Consequently,
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ignition cannot be initiated by changing the fuel fraction; an ignition source is required
to ignite a flammable mixture.

The concept that there are limiting temperatures below which flames cannot prop-
agate is often useful [50]. For example, it is possible to predict the effectiveness of a
wide variety of fire-retardants based upon the premise that extinction occurs when suf-
ficient heat has been removed by the additive to reduce the temperature to a critical
value [14]. Critical “minimal flame temperatures” are identified in figures 3(c)–(d) as
the steady-state temperature at the extinction limit points. In these figures the limit-
ing fuel-lean flame temperature is higher than the limiting fuel-rich flame temperature.
For the mushroom, these temperatures are T ∗ = 2.535 and T ∗ = 2.285, respectively,
whereas for the isola they are T ∗ = 2.572 and T ∗ = 2.344. These values provide critical
flame-temperatures for fuel–air mixtures. The temperature at the extinction limit when
a retardant is present is not necessarily the same as that in the absence of the additive.
In practice critical loadings can be calculated satisfactorily using a common limiting
temperature [14].

4.2. Inflow temperature as the primary bifurcation parameter

In this section the inflow temperature is regarded as the primary bifurcation para-
meter, with the inflow pressure and fuel fraction as the secondary continuation parame-
ters.

Figure 4 shows the cusp and isola locii in the inflow pressure–fuel fraction plane.
These curves, parameterised by the inflow temperature, divide the plane into three re-
gions and there is no organising centre. Figure 5 shows the three generic steady-state
diagrams. In these subfigures the fuel fraction is fixed (α = 0.6) and inflow pressure
increased. All three subfigures contain two disjoint solution branches.

Figure 5(a) shows that in region (a) of figure 4 the response diagram contains a
combustion branch and a unique equilibrium branch. The former contains one extinc-
tion limit point and no ignition limit points. The latter has no limit points and the
steady-state temperature increases monotonically with increasing inflow temperature.
Abrupt changes in the steady-state temperature (ignition) in this system cannot be ini-
tiated by smoothly changing the inflow temperature. The physical system defined by
figure 5(a) is flammable for those inflow temperatures at which the combustion branch
exists. However, from a practical perspective, this figure represents a fuel that is not
flammable. The reason for this is that the combustion branch only exists at low temper-
atures (T ∗0 � 0.304). The assumptions of the model would not apply at these tempera-
tures, e.g., departure from ideal gas behaviour and even liquefaction of the reactants at
sufficiently low inflow temperatures.

As the inflow pressure is increased, at a fixed fuel fraction of α = 0.6, the cusp lo-
cus is crossed in figure 4. Figure 5(b) shows that the cusp point occurs on the monotonic
branch, creating a steady-state diagram containing three limit points on two disjoint
curves. There are now two combustion branches: combustion branch (1) which has an
extinction limit point but no ignition limit point; and, combustion branch (2) which has
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Figure 4. Bifurcation diagram in the inflow pressure-fuel fraction plane when inflow temperature is the
distinguished bifurcation parameter. The marked regions correspond to: (a) unique solution branch +
disjoint multi-valued branch; (b) breaking wave + disjoint multi-valued branch; and (c) multi-valued no-
ignition branch + single-valued combustion branch. Typical steady-state diagrams from the three regions

are shown in figure 5. Parameter value: dimensionless precursor decay rate, A∗1 = 0.1.

both an ignition and an extinction limit point. The inflow temperature at which the ex-
tinction limit point occurs on combustion branch (1) has increased and is now slightly
higher than room temperature (T ∗0 = 1.032). As a result some parts of this branch
are now physically meaningful and would be experimentally accessible. Consequently,
there are now two regions of the inflow temperature over which the reaction mixture is
flammable: an upper region, between the inflow temperatures at which the second ex-
tinction limit point and the ignition limit point occur, and a lower region, bounded by
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Figure 5. The three generic steady-state diagrams when inflow temperature is the primary bifurcation
parameter: (a) unique solution + disjoint multi-valued branch, (b) breaking wave + disjoint multi-valued
branch, (c) multi-valued no-ignition branch + single-valued combustion branch. These figures correspond
to a vertical slice through figure 4 with value α = 0.6. The abbreviations ELP and ILP are extinction
limit point and ignition limit point, respectively. Parameter values: dimensionless precursor decay rate,
A∗1 = 0.1; fuel fraction, α = 0.6; dimensionless inflow pressure, (a) P∗ = 6 · 10−3, (b) P∗ = 14 · 10−3,

(c) P∗ = 15 · 10−3.

the inflow temperature at the first extinction limit point and a lower value at which the
assumptions of the model cease to hold.

As the inflow pressure is increased further the two extinction limit points in fig-
ure 5(b) approach each other. At criticality the two disjoint solution branches join to-
gether, splitting apart as the isola variety is crossed. As the steady-state curves on either
side of the singularity contain disjoint solution branches the critical point is a transcrit-
ical singularity. Figure 5(c) has a no-ignition branch, containing one limit point, and
a combustion branch, containing no limit points. The latter is defined for any inflow
temperature. Consequently, once combustion is initiated it cannot be extinguished by
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slowly varying the inflow temperature. This system defines a flammable mixture for
values of the inflow temperature that lays between the inflow temperature at which the
model breaks down and the ignition limit point. At sufficiently high values of the in-
flow temperature autoignition occurs. Again those parts of these two branches occurring
at sufficiently low inflow temperatures – such as the origin – are not physically mean-
ingful. Comparing figures 5(b), (c) observe that in effect the stable components of the
two combustion branches have merged together to form one combustion branch whilst
the two unstable components of the disjoint solution branches have formed the unstable
component of the no-ignition branch.

Figure 6 shows the limit point unfolding diagram when the fuel fraction is fixed
with α = 0.6. In figure 6(a) the parameter values at which the transcritical and cusp
singularities occur are identified. The range for inflow pressures over which the generic
steady-state diagrams are found are marked. Although the generic steady-state diagrams
contain two disjoint solution branches with different combinations of limit points on the
branches the limit points are connected in the unfolding diagram. Figure 6(b) uses the
unfolding diagram to identify the combustion phenomena occurring as a function of the
inflow pressure and inflow temperature. The parameter plane is divided into three re-
gions in which either ignition, slow reaction, or bistability is exhibited. The bistability
region could be subdivided into two, depending upon if the assumptions of the model
hold. Note that for sufficiently low pressure the steady-state diagram is given by fig-
ure 5(a) and the transition from “slow reaction” to ignition occurs gradually. Similarly
at sufficiently high inflow temperature the steady-state diagram is similar to figure 8(a)
and the transition is gradual.

Figure 6. The limit point unfolding diagram in the inflow pressure-inflow temperature plane when the
fuel fraction is α = 0.6: (a) the domains of existence of the three generic steady-state diagrams in figure 5;
(b) the pressure-inflow temperature ignition limit diagram. Parameter value: dimensionless precursor decay

rate, A∗1 = 0.1.
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4.3. Inflow pressure as the primary bifurcation parameter

In this section the inflow pressure is regarded as the primary bifurcation parameter,
with the inflow temperature and the fuel fraction as the secondary continuation parame-
ters.

Figure 7 shows the cusp locus in the inflow temperature–fuel fraction plane. In
section 4.3.1 we show that the isola singularity does not occur when inflow pressure is
the primary bifurcation parameter. The cusp locus, parameterised by the inflow pressure,
divides the plane into two regions. Thus there are two generic steady-state diagrams.
For a given value of the fuel fraction both regions are found in a neighbourhood of
the corresponding cusp point. Thus the cusp singularity is an organising centre in this

Figure 7. Bifurcation diagram in the inflow temperature–fuel fraction plane when inflow pressure is the
distinguished bifurcation parameter. The marked regions correspond to: (a) unique steady-state; (b) single
hysteresis loop (breaking wave). Typical steady-state diagrams from the two regions are shown in figure 8.

Parameter value: dimensionless precursor decay rate, A∗1 = 0.1.
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Figure 8. The two generic steady-state diagrams when inflow temperature is the primary bifurcation para-
meter: (a) unique solution, showing a point of absolute sensitivity, discussed in section 5.2, (b) breaking
wave. These figures correspond to a vertical slice through figure 7 with value α = 0.50. Parameter values:
dimensionless precursor decay rate, A∗1 = 0.1; fuel fraction, α = 0.5; dimensionless inflow temperature,

(a) T ∗0 = 2.2, (b) T ∗0 = 1.5,

diagram.
In region (a) of figure 7 the response diagram is a unique steady-state, with the

steady-state temperature increasing monotonically with increasing inflow pressure. This
scenario is shown in figure 8(a). As the inflow temperature is decreased in figure 7 the
cusp locus is eventually crossed. The steady-state diagram now contains an ignition limit
point and an extinction limit point. This case is shown in figure 8(b). As can be seen
from this figure the steady-state temperature increases rapidly with inflow pressure on
the combustion branch.

From a practical perspective combustion occurs for the system represented by fig-
ure 8(a) at sufficiently high pressures. The increase in inflow pressure shown in this
figure, from P∗ = 0 to P∗ = 0.012, has produced a dimensionless temperature increase
of T ∗ ≈ 0.8, approximately 240 K. This temperature increase, due to chemical reaction,
will continue to grow as the pressure is increased and there will be a value of the inflow
pressure at which it is not possible to study this system in a glass vessel. Criticality for
unique solution structures is discussed in section 5.2.

4.3.1. Singularity theory when inflow pressure is the distinguished parameter
In this section we show that the equations G = 0 and GP∗ = 0 cannot be satisfied

simultaneously. Hence, when the inflow pressure is the experimentally manipulated pa-
rameter (distinguished parameter in singularity theory) isolas, transcritical bifurcations,
pitchfork bifurcations, and various other higher-order singularities cannot occur.

It is convenient to rewrite equation (38) in the form

G = Z(
T ∗0 − T ∗

)+ Y P∗
2

T ∗2

0

[
X +W T ∗0 (T

∗
0 − T ∗)
P∗

][
V +W T ∗0

(
T ∗0 − T ∗

)
P∗

]
. (44)
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The functions V, W, X, Y and Z can be identified by inspection, whereupon it is seen
that (recalling that 0 < α < 1)

V > 0, W > 0, X > 0, Y = f (T ) > 0, Z > 0. (45)

After some algebra it is found that the equation GP∗ = 0 has the solution

P∗ = −WT ∗0
(
T ∗0 − T ∗

) (X + V )
2XV

. (46)

Substitution of this expression into equation (44) gives

0 = (
T ∗0 − T ∗

){
Z − YW

2[X − V ]2
4XV

(
T ∗0 − T ∗

)}
. (47)

Thus, either

T ∗ = T ∗0 , (48)

or

T ∗ = T ∗0 − 4
XVZ

W 2Y [X − V ]2 . (49)

Equations (48), (49) show that if G = GP∗ = 0, then the steady-state temperature is
either equal to the inflow temperature, equation (48), or strictly less than the inflow
temperature, equation (49). However, for 0 < α < 1 the steady-state temperature is
always higher than the inflow temperature. Thus, we conclude that it is not possible
for both G and GP∗ to be simultaneously zero. As a result, the isola singularity, and
related higher-order singularities, do not exist when inflow pressure is the distinguished
parameter.

4.4. Precursor decay rate as the primary bifurcation parameter

In this section the precursor decay rate is regarded as the primary bifurcation pa-
rameter, with the inflow pressure, inflow temperature, and fuel fraction as the secondary
continuation parameters. It is not possible to manipulate the preexponential factor of
a chemical reaction experimentally. However, the Sal’nikov scheme represents an ide-
alised chemical mechanism and it is usual to treat the decay rate as a distinguished
parameter.

Differentiation of equation (38) gives

GA∗1 =
Q∗2A

∗
2P∗

2

T ∗2

0

exp

[−E∗2
T ∗

]{
0.21q∗2 (1− α)
q∗1 + q∗2

+ T ∗0
Q∗2P∗

[
T ∗0 − T ∗

]}

×
{

nq∗1α
(q∗1 + q∗2 + A∗1)2

}
. (50)
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The solution of GA∗1 = 0 is given by

T ∗ = T ∗0 +
Q∗2P
T ∗0

0.21q∗2 (1− α)
q∗1 + q∗2

. (51)

Substitution of equation (51) into equation (38) gives

G = −0.21q∗2 (1− α)
Q∗2P
T ∗0

< 0 as 0 < α < 1. (52)

It is, therefore, not possible to satisfy the equations G = 0 and GA∗1 = 0 simultane-
ously. As a result, we again do not obtain the isola singularity and related higher-order
singularities.

5. Discussion

5.1. The dependence of the maximum temperature upon fuel fraction

Our chemical mechanism consists of two consecutive reactions. In the first, the
precursor species (F) decomposes to produce a reductant (B). In the second, one mole
of B reacts with one mole of oxygen. Under ideal operating conditions the species B
and O2 are completely consumed in the reactor. From this premise simple physical
reasoning infers that as the fuel fraction is varied the maximum temperature inside the
reactor should occur when the rate of production of species B inside the reactor is equal
to the rate of inflow of oxygen. Under this condition the concentrations of fuel and
oxygen are in their stoichiometric proportions, i.e., they are 1:1.

From equations (25), (27) the rate of production of fuel inside the reactor and the
inflow of oxygen into the reactor are given by nA∗1F∗ and 0.21q∗2 (1 − α), respectively.
Under steady-state conditions the concentration of precursor species is given by equa-
tion (30). Thus, the maximum temperature should occur when the fuel fraction satisfies

nA∗1F∗ = 0.21q∗2 (1− α), (53)

⇒ nA∗1 ·
q∗1α

q∗1 + q∗2 + A∗1
= 0.21q∗2 (1− α). (54)

The critical value of the fuel fraction is, therefore,

α = 0.21q∗2 (q
∗
1 + q∗2 + A∗1)

nA∗1q
∗
1 + 0.21q∗2 (q

∗
1 + q∗2 + A∗1)

. (55)

Equation (55) predicts that the maximum temperature only depends upon the inflow rates
and the precursor decay rate. For the values used in figure 3 the maximum temperature
is predicted to occur when α = 0.176. This is a good approximation to the observed
value (α ≈ 0.179).
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Equation (55) is based upon simple physical reasoning. More accurately, the max-
imum temperature is found by viewing equation (38) as defining temperature as a func-
tion of fuel fraction and solving the system

G
(
T ∗(α), α

)= 0, (56)

Gα
(
T ∗(α), α

)= 0, subject to the condition
dT ∗

dα
= 0. (57)

These equations do not have a simple solution giving the fuel fraction at which the
maximum temperature occurs. Equation (57) is equivalent to solving Gα = 0. After
some algebra the solution of the equation Gα = 0 is found to be

α = 1

2
+ (q∗1 + q∗2 )

0.42nq∗1q
∗
2A∗1

[
nq∗1A∗1 − 0.21q∗2

(
q∗1 + q∗2 +A∗1

)]T ∗0 (T ∗0 − T ∗)
Q∗2P∗

. (58)

Thus, we conclude that the critical value of the fuel fraction decreases as the precursor
decay rate increases.

5.2. Criticality when the response diagram is single-valued

In figure 3(a) the response diagram has a unique solution for any value of the fuel
fraction. As discussed in section 4.1 even though there are no limit points, there are
values of the fuel fraction at which combustion occurs; a flame would be visible. Ac-
cordingly a definition of criticality for these systems is required. Similarly a demarcation
of the slow-reaction/combustion boundary is required for figure 3(b) where combustion
is initiated gradually as the fuel fraction is decreased from one and increased from zero
respectively. (In figure 3(b) ignition is defined by a limit point bifurcation if the fuel
fraction is increased from zero.) In these situations criticality can be defined using either
absolute or normalised sensitivities. This concept was first applied to the interpretation
of unique response curves in a CSTR by Chemburkar et al. [51].

As the fuel fraction is increased from zero in figure 3(a) “ignition” occurs some-
where in the range 0 < α < αmax, where αmax is the fuel fraction at which the maximum
temperature on the response diagram is found. A pragmatic definitionfor the slow-
reaction/combustion transition in this region is to define criticality as the fuel fraction
at which the modulus of the first derivative of temperature, as a function of the fuel
fraction, has maximum value. At this point the temperature exhibits maximum absolute
sensitivity to changes in the fuel fraction. As the fuel fraction is increased from αmax,
“extinction” occurs somewhere in the region αmax < α < 1 and an analogous identifi-
cation of the “combustion/slow-reaction” boundary can be made. Congruous definitions
are used when the fuel fraction is decreased from one. Hence, points of ignition and
extinction when the fuel fraction is increased from zero are points of extinction and ig-
nition when it is decreased from one. In figure 3(a) these points occur at α = 0.031 and
α = 0.900.

Ignition and extinction can be defined in this way in the appropriate regions for
the response diagrams shown in figures 3(b). Note that when limit points occur, e.g., as
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the fuel fraction is increased from zero in figure 3(b), the maximum absolute sensitivity
occurs at the appropriate limit point. This approach can also be used to define criticality
for figure 5(a) (assuming that we are on the unique-branch) and figure 8(a). The point of
absolute sensitivity in figure 8(a) occurs at P∗ = 0.00646.

5.3. Flammability limits

Although gaseous fuels such as methane and propane are commonly referred to
as flammable, their mixtures with oxygen or air will only burn if the fuel concentration
lies within sharply defined limits, known as the lower (fuel-lean) and upper (fuel-rich)
flammability limits. Outside of these limits ignition and flame propagation cannot be
initiated by the application of an external stimulus. Even if a reaction mixture lie within
its flammability limits ignition requires the input of sufficient energy in a suitable form.
The most widely used method to determine flammability limits is the US Bureau of
Mines apparatus [52] which measures a mixture’s propensity to propagate a flame up a
tube. This apparatus is unsatisfactory for examining the effects that small quantities of
gas-phase active fire-retardants have on flammability limits. Hirst et al. [53] introduced a
new apparatus specifically for this purpose. In this method the criterion of flammability
is defined in terms of the pressure rise inside a closed spherical vessel. Many other
methods have been used in the literature to study inhibition and extinction.

The CSTR offers another approach to measure flammability limits. A system rep-
resented by an isola, e.g., figure 3(d), satisfies the standard concept of a flammable
system: the flammability limits are identified with the extinction limit points and are
consequently sharply defined; the system is bistable between the flammability limits;
consequently, an ignition source is required to ignite a flammable mixture. The identifi-
cation of flammability limits with extinction limit points on an isola as the composition
of a reaction mixture is varied was first made by Spalding [54]. More generally, it is
possible that stability is lost at a Hopf point on the isola curve [55]. Thus one or both
of the flammability limits may correspond to a Hopf point. The effect of a fire-retardant
can be investigated by determining how these limits change as the additive concentra-
tion is increased. Conceptually, one imagines that as the degree of retardancy increases
the extinction limit points approach each other, eventually the isola is destroyed when
they annihilate each other. This is the case for chemically inert additives in well-stirred
closed-vessel experiments [56].

In figure 3(d) the flammability limits are α = 0.062 and α = 0.788. Two types
of problems can be addressed. We can pick a particular value of the fuel fraction, e.g.,
α = 0.2, and determine the additive concentration at which this mixture ceases to be
flammable. Alternatively, we can determine a critical additive loading at which no air-
fuel-additive mixture is flammable. The answer to the former is defined by the additive
concentration at which an extinction limit point “passes through” the chosen value of
the fuel fraction [56]. The answer to the latter is given by the additive concentration at
which the isola is destroyed at the isola singularity [56]. In figure 2 this can be envisaged
as crossing the boundary between regions (d) and (a).
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The determination of a critical doping level at which a specified mixtures ceases
to be flammable requires a large number of repetitive tests in both of the standard tests
mentioned previously. One advantage of using a CSTR is that a state of combustion
can be stabilised in the absence of the additive and then the additive concentration in
the inflow slowly increased until combustion ceases. Thus one continuous experiment
determines the limit.

From the perspective of flammability studies the existence of isolas is a desirable
feature. In other applications, such as the operation of industrial reactors, they are unde-
sirable: their presence leading to unexpected problems in the operation and start-up of
reactors. As it is very easy to miss their presence in experimental studies it is helpful to
be able construct figures similar to figure 2 showing operating conditions in which they
occur and which are therefore to be avoided.

The isola is also found in the well studied FONI system as the flowrate is
changed [1]. In this case the extinction limit points do not define flammability limits
as the chemical system only contains one reactive component. They do, however, define
operating conditions which should be avoided.

6. Conclusions

In this paper we have investigated the dynamics of a gaseous oxidation reaction
in an adiabatic continuously stirred reactor. The chemical mechanism used is a modi-
fied single Sal’nikov scheme. The Sal’nikov mechanism has been extended so that the
second step is a bimolecular reaction between a fuel species and oxygen. Ignition and
extinction behaviour are now exhibited as the ratio of reactants flowing into the reac-
tor is varied. The model contains a temperature equation and an equation each for the
three chemical species. Under the assumption of adiabatic behaviour this system reduces
to one equation. Consequently periodic solutions for this system are impossible under
adiabatic conditions.

The main bifurcation parameters of interest in this study are the inflow pressure,
the inflow temperature, and the fuel fraction. The steady-state structure of the model is
investigated by applying the techniques of singularity theory. When inflow pressure is
the distinguished parameter a pitchfork singularity is the organising centre. One of the
steady-state diagrams generated by this point is the isola. This represents the standard
understanding of flammability limits as the fuel fraction is varied. A simple theory, based
upon physical reasoning, allows the fuel fraction at which the maximum temperature
occurs to be accurately predicted.

When the inflow temperature is varied there are three steady-state structures. Both
the hysteresis and the transcritical variety occur, an organising centre was not found.
When the inflow pressure is varied it is shown that the isola singularity cannot occur.
The organising centre in this case is the cusp singularity and there are two types of
steady-state structure.

From the perspective of determining flammability the most important bifurcation
parameter is the fuel fraction and the most important steady-state structure is the isola.
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This figure defines flammability limits, outside of which fuel-air mixtures cannot sus-
tain flames. The effectiveness of different classes of fire-retardants can be classified by
investigating how the flammability limits change as the additive loading increases.
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Appendix. Nomenclature

A superscript ∗ refers to a dimensionless quantity, i.e., P∗ is a dimensionless pa-
rameter whose dimensional counterpart is P. The notation V(t = 0) and V∗(0) refers
to the initial value of the dimensional variable V at time t = 0 and its dimensionless
counterpart at time t∗ = 0.

A1 Pre-exponential factor for the decomposition of the precursor
species. s−1

A∗1 A∗1 = A1 · cpgρgVg/χS.
A2 Pre-exponential factor for the gas-phase oxidation reaction. m3 ·mol−1 · s−1

A∗2 A∗2 = A2 · cpgρgVg/χS · Pr(RTr).
B The concentration of gaseous fuel B in the reactor. mol ·m−3

B∗ B∗ = B/cr.
B∗(0) B∗(0) = B0/cr.
C The concentration of product species C in the reactor. mol ·m−3

E2 Activation energy for the gas-phase oxidation reaction. J ·mol−1

E∗2 E∗2 = E2/(RTr).
F The concentration of the precursor species in the reactor. mol ·m−3

F∗ F∗ = F/cr.
F∗(0) F∗(0) = F(0)/cr.
F0 The concentration of the precursor species in the reactant

inflow tube: F0 = Pf/RT0. mol ·m−3

F∗0 F∗0 = F0/cr = Pf/(RT0) · RT0/P0 = Pf/P0 = α.
J A constant. J = 0 corresponds to adiabatic operation.
O2 The concentration of oxygen in the reactor. mol ·m−3

O∗2 O∗2 = O2/cr.
O∗2(0) O∗2(0) = O2(0)/cr.
O2,0 The concentration of oxygen in the inflow:

O2,0 = 0.21Pair/(RT0) = 0.21(P0 − Pf)/(RT0). mol ·m−3

O∗2,0 O∗2,0 = O2,0/cr = 0.21(1 − α).
P∗ Dimensionless total pressure: P∗ = P0/Pr.
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Pr A reference pressure. J ·m−3

P0 The total pressure of the inflow reactants: P0 = Pair + Pf. J ·m−3

Q2 Exothermicity of the oxidation reaction. J ·mol−1

Q∗2 Q∗2 = Q2 · Pr/(RTr) · 1/(cpgρgTr).
R Ideal gas constant. J · K−1 ·mol−1

S The internal surface area of the reactor. m2

T The temperature inside the reactor. K
T ∗ T ∗ = T /Tr.
T (0) The temperature inside the reactor at time t = 0. K
T ∗(0) T ∗(0) = T (0)/Tr.
Ta The temperature of the reactor walls. K
T ∗a T ∗a = Ta/Tr.
Tr The reference temperature scale. K
T0 The temperature of the inflow. K
T ∗0 T ∗0 = T0/Tr.
Vg Volume of the reactor. m3

cpg Heat capacity of the reaction mixture. J · K−1 · kg−1

cr Reference concentration: maximum concentration of an ideal
gas assembled at a pressure P0 and temperature T0,
cr = P0/(RT0). mol ·m−3

n The number of moles of gaseous fuel (B) produced by the
decomposition of 1 mole of reactant A.

q1 The flowrate through the reactant tube into the reactor. m3 · s−1

q∗1 q∗1 = q1 · cpgρg/χS.
q2 The flowrate through the oxygen tube into the reactor. m3 · s−1

q∗2 q∗2 = q2 · cpgρg/χS.
t Time. s
t∗ t∗ = t · χS/cpgρgVg.
α The fraction of fuel (by partial pressure) in the inflow:

α = Pf/P0.
ρg Density of the reaction mixture. kg ·m−3

χ Heat transfer coefficient between the reaction mixture and the
reactor walls. J · s−1 ·m−2 · K−1

Unless otherwise specified we take the following typical parameter values: A2 =
109 m3 · mol−1 · s−1, E2 = 114.737478 · 103 J · mol−1, Q2 = 500 · 103 J · mol−1,
S = 7.6766 · 10−2 m2, T0 = 600 K, V = 2 · 10−3 m3, cpg = 638.4814 J · kg−1 · K−1,
n = 1, q1 = Vg/16 m3 · s−1, q2 = Vg/16 m3 · s−1, ρg = 0.038 kg · m−3, χ =
39.0798 J · s−1 ·m−2 · K−1.

The appropriate values for physical constants are: R = 8.31441 J · K ·mol−1.
We take Pr = 1.01325 · 105 J ·m−3, Tr = 298 K.
Typically mean residence times tres = Vg/(q1+ q2) are of the order of seconds and

are variable over about a three- to sixfold range. The value taken for the flowrates in this
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paper gives a typical residence time for a molecule in the reactor of 8 s. This fits into the
range of values commonly used.
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